Combinatorics II Discrete Algebraic Structures

Thomas J. Friese

November 8, 2024

Inclusion-exclusion principle

$$|A_1 \cup A_2 \cup \cdots \cup A_n| = \sum_{r=1}^n (-1)^{r+1} \sum_{1 \le i_1 < i_2 < \cdots < i_r \le n} |A_{i_1} \cap \cdots \cap A_{i_r}|$$

 \Rightarrow simple cases (should be sufficient for the exam):

$$n = 2$$
:
 $|A \cup B| = |A| + |B| - |A \cap B|$
 $n = 3$:

 $|A\cup B\cup C|=|A|+|B|+|C|-|A\cap B|-|A\cap C|-|B\cap C|+|A\cap B\cap C|$

Double counting

For $R \subseteq A \times B$:

$$\sum_{a\in A} {\sf deg}(a) = \sum_{b\in B} {\sf deg}(b)$$

Example application:

◇ prove $a \cdot m = b \cdot n$ by constructing suitable sets A and B (with known cardinality |A| = a, |B| = b) and relation R (with known degrees deg(a) = $m \forall a \in A$, deg(b) = $n \forall b \in B$)

Pigeonhole principle

For |A| > k|B| and $f : A \to B$: There exist k + 1 distinct elements x_1, x_2, \dots, x_{k+1} such that

$$f(x_1)=f(x_2)=\cdots=f(x_{k+1})$$